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1 Cauchy’s Integral Formula and Morera’s Theorem

1.1 Cauchy’s integral formula for rectangles

Let Ω ⊆ C be a domain. Last time we proved the following.

Lemma 1.1. If R is a rectangle with R ⊆ Ω and f ∈ H(Ω), then∫
∂R
f(z) dz = 0.

Let’s go further with this result.

Lemma 1.2. Let R be a rectangle. Then∫
∂R

1

z − a
dz =

{
0 a /∈ R
2πi a ∈ R.

Proof. If a /∈ R, use the previous lemma. Other wise, let S = {x : |x− Re(a)| < δ} ∪ {y :
|y − Im(a)| < δ} be a square. Then S ⊆ R. Split the rectangle R into disjoint rectangles
including S, where the only rectangle containing a is S. Change the contour appropriately.

The contributions of the other rectangles to the contour integral all are zero by the
previous lemma. So ∫

∂R

1

z − a
dz =

∫
∂S

1

z − a
dz.

Without loss of generality, δ = 1 and a = 0. Then this is the integral

=

∫ 1

−1

1

x− i
dx︸ ︷︷ ︸

I

+

∫ 1

−1

i

1 + iy
dy︸ ︷︷ ︸

II

−
∫ 1

−1

1

x+ i
dx︸ ︷︷ ︸

III

+

∫ 1

−1

i

−1 + iy
dy︸ ︷︷ ︸

IV

Note that

I + III =

∫ 1

−1

1

x− i
− 1

x+ i
dx = 2i

∫ 1

−1

1

1 + x2
dx = 2i(tan−1(1)− tan−1(−1)).

You can find that II + IV is equal to the same thing.
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Theorem 1.1 (Cauchy integral formula for rectangles). Let R ⊆ Ω and f ∈ H(Ω). Then

1

2πi

∫
∂R

f(z)

z − a
dz =

{
0 a /∈ R
f(a) a ∈ int(R).

Proof. If a ∈ R, then this is
1

2πi

∫
∂S

f(z)

z − a
dz,

where S is a square. The previous lemma gives us that∣∣∣∣ 1

2πi

∫
∂S

f(z)

z − a
dz − f(a)

∣∣∣∣ =

∣∣∣∣ 1

2πi

∫
∂S

f(z)− f(a)

z − a
dz

∣∣∣∣ .
Now note that since f(z) = f(a) + f ′(z)(z − a) + o(|z − a|),

f(z)− f(a)

z − a
z→a−−−→ f ′(a).

So as we make the square S smaller, this goes to 0.

Corollary 1.1. H(Ω) = A(Ω), where A(Ω) is the set of functions f : Ω→ C such that f
has a convergent power series in some radius around every point in Ω.

Proof. Let f ∈ H(Ω), z0 ∈ Ω, δ > 0, and B(z0, 2
√

2δ) = {z : |z − z0| < 2
√

2δ} ⊆ Ω.
Let S ⊆ B(z0, 2

√
2δ) be a square around z0. If |z − z0| < δ, then

f(z) =
1

2πi

∫
∂S

f(ζ)

ζ − z
dζ

=
1

2πi

∫
∂S

f(ζ)

(ζ − z0)− (z − z0)
dζ

=
1

2πi

∫
∂S

f(ζ)

ζ − z0

(
1

1− (z − z0)/(ζ − z0)

)
dζ

The part in the parentheses is
∑∞

n=0(z − z0)n/(ζ − z0)n, which is a convergent geometric
series.

=
∞∑
n=0

(
1

2πi

∫
∂S

f(ζ)

(ζ − z0)n+1
dζ

)
(z − z0)n.

1.2 Morera’s theorem

Theorem 1.2 (Morera). Suppose f : Ω→ C is continuous, and for all z0 ∈ Ω, let δ(z0) > 0
such that B(z0, δ(z0)) ⊆ Ω. Let R ⊆ B(z0, δ(z0)) be a rectangle with sides parallel to the
axes, and suppose that ∫

∂R
f(z) dz = 0.

Then f ∈ H(Ω).
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Proof. Without loss of generality, Ω is a disc B = {z : |z − z0| < a}. If z ∈ V , let γz0,z be
a curve joining z0 = z(0) to z = z(1) consisting of two sides of the rectangle with opposite
vertices z0 and z. Let

F (z) =

∫
γz0,z

f(ζ) dζ.

F is well-defined because the hypothesis says that this integral is the same no matter which
curve we take γz0,z to be.

Let z, w ∈ B with |w − z| small. Note that

|F (w)− F (z)− f(z)(w − z)| =
∣∣∣∣∫
γw,z

f(ζ)− f(w) dζ

∣∣∣∣
≤ sup
|ζ−w|<|z−w|

|f(ζ)− f(w)| · |z − w|

= |z − w| · o(|z − w|).

So F ′(u) = f(u). Then, since holomorphic implies analytic (we will prove this later), we
get that f is holomorphic.

Next time, we will prove the following.

Theorem 1.3 (Goursat). Let f : Ω → C be such that f ′(z) exists for all z ∈ Ω. Then
f ∈ H(Ω).

Corollary 1.2. Let f : Ω ⊆ C. The following are equivalent:

1. f ′(z) exists for all z ∈ Ω

2. f ∈ H(Ω)

3. f ∈ A(Ω)

4.
∫
∂R f(z) dz = 0 for all rectangles R with R ⊆ Ω.

5. f is differentiable, and the matrix df =

[
ux uy
vx vy

]
satisfies the Cauchy-Riemann equa-

tions, ux = vy, vx = −uy.
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