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1 Cauchy’s Integral Formula and Morera’s Theorem

1.1 Cauchy’s integral formula for rectangles

Let 2 C C be a domain. Last time we proved the following.
Lemma 1.1. If R is a rectangle with R C Q and f € H(Q), then
f(z)dz =0.
OR
Let’s go further with this result.
Lemma 1.2. Let R be a rectangle. Then
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Proof. If a ¢ R, use the previous lemma. Other wise, let S = {z : |z — Re(a)| < d} U {y :
ly — Im(a)| < §} be a square. Then S C R. Split the rectangle R into disjoint rectangles
including S, where the only rectangle containing a is S. Change the contour appropriately.

The contributions of the other rectangles to the contour integral all are zero by the

previous lemma. So
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Without loss of generality, § = 1 and a = 0. Then this is the integral
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Note that
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I+111= /_1 P de = 2i/_1 T2 dz = 2i(tan" (1) — tan™'(—1)).
You can find that I1 4+ I'V is equal to the same thing. O



Theorem 1.1 (Cauchy integral formula for rectangles). Let R C Q and f € H(Q). Then
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Proof. If a € R, then this is
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where S is a square. The previous lemma gives us that
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Now note that since f(z) = f(a) + f'(2)(z — a) + o(]z — al),
f(z) = fla) z=a (a)
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So as we make the square S smaller, this goes to 0.
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Corollary 1.1. H(Q2) = A(QY), where A(Q2) is the set of functions f: Q — C such that f

has a convergent power series in some radius around every point in €.

Proof. Let f € H(Q), 20 € Q, § >0, and B(z0,2v/26) = {z : |z — 20| < 2v/20} C Q.

Let S C B(zo,2v/26) be a square around zq. If |z — 2| < §, then
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The part in the parentheses is > "7 ((z — 20)"/(¢ — 20)", which is a convergent geometric
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1.2 Morera’s theorem

O

Theorem 1.2 (Morera). Suppose f : Q — C is continuous, and for all zy € 2, let 6(zp) > 0
such that B(zp,d(z0)) € Q. Let R C B(z0,9(20)) be a rectangle with sides parallel to the

azes, and suppose that

/aRf(z)dz—O.

Then f € H(Q).



Proof. Without loss of generality, 2 is a disc B = {2 : |z — 29| < a}. If z € V, let v, . be
a curve joining zg = z(0) to z = z(1) consisting of two sides of the rectangle with opposite
vertices zg and z. Let
F(z) = ore
Vzq,z

F' is well-defined because the hypothesis says that this integral is the same no matter which
curve we take 7., . to be.

Let z,w € B with |w — z| small. Note that

[F(w) = F(z) = f(2)(w - 2)| = (€) = f(w)d¢
< sup o [f(Q) = flw)] - [z — w|

[¢—w|<|z—w]|

=z —w|-o|z —wl|).

So F'(u) = f(u). Then, since holomorphic implies analytic (we will prove this later), we
get that f is holomorphic. O

Next time, we will prove the following.

Theorem 1.3 (Goursat). Let f : Q — C be such that f'(z) exists for all z € Q. Then
feH(Q).

Corollary 1.2. Let f : Q C C. The following are equivalent:
1. f'(z) exists for all z € Q
2. fe HQ)
3. feAQ)
4. [op [(z)dz =0 for all rectangles R with RCA.
5. [ is differentiable, and the matriz df = [uw uy] satisfies the Cauchy-Riemann equa-

Uy Uy
tions, Uy = Uy, Uy = —Uy.
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